$\left.\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)+$ appears. This means that the full set of displacements corresponding to a particular composite symmetry is obtained by adding the vector $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ in turn to all displacements of the set given in the first column. The full set of displacements contains all the vectors whose end-points are equivalent positions in the space group of the vector set associated with the original composite. Such a set of displacements will be referred to as 'set of equivalent displacements' and the number of equivalent displacements in the set is called its rank.

In part I we pointed out there are displacements which create symmetry-related composites. This is true for periodic composites as well. In this case, however, the periodicity of the spatial symmetry variation must also be taken into account. If the translational symmetry of the vector set of a periodic composite is described by a primitive lattice, then the set of equivalent displacements contains all the shift vectors which yield symmetry-related composites. On the other hand, for vector sets with non-primitive lattices the set of equivalent displacements contains in addition displacements which are associated with identical composites. This is the case for the aboveconsidered example. The equivalent displacements $(0,0, z),(0,0, \bar{z}),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}+z\right),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}-z\right)$, for instance, yield composites with symmetry $I 42^{\prime} 2^{\prime}$. But all these composites are not symmetry equivalent. The first and third, as well as the second and fourth, displacements are interrelated by the translation vector $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ of the vector set and, hence, they correspond to identical composites. Thus, the number of symmetry-related composites depends on whether the lattice of the vector set (or, equivalently, of the periodic composite; see Buerger, 1959) is primitive or not. The number of symmetry-related composites is equal to the rank of
the set of equivalent displacements divided by the number of lattice points in the unit cell of the periodic composite. This can be expressed comprehensively through a detailed study of the symmetry-related composites obtained by general and special displacements. Such a formulation in group theoretical terms will, however, be discussed in a following paper.

References

AsCher, E. \& Janner, A. (1965). Acta Cryst. 18, 325-329.
Belov, N. V. \& TARKhova, T. N. (1956). Kristallografiya, 1, 4-13, 619-620 (in Russian). Eng. trans: Sov. Phys.-Crystallogr. (1956), 1, 5-11, 487-488. Also partial translation of the first paper in Colored Symmetry (1964). By A. V. Shubnikov \& N. V. Belov pp. 211-219. New York: Pergamon Press.
Buerger, M. J. (1950) Acta Cryst. 3, 87-97; erratum: Acta Cryst. (1950), 3, 243.

Buerger, M. J. (1959). Vector Space. New York: Wiley.
Grimmer, H., Bollmann, W. \& Warrington, D. H. (1974). Acta Cryst. A30, 197-207.
Hermann, C. (1929). Z. Kristallogr. 69, 533-555.
International Tables for X-ray Crystallography (1965). Vol. I. Birmingham: Kynoch Press.
Kurosh, A. (1955). Group Theory, 2nd ed. New York: Chelsea.
Pond, R. C. (1977). Proc. R. Soc. London Ser. A, 357, 471-483.
Pond, R. C. (1979). J. Microsc. 116, 105-114.
Pond, R. C. \& Bollmann, W. (1979). Philos. Trans. R. Soc. London, 292, 449-472.
Pond, R. C., Smith, D. A. \& Vitek, V. (1979). Acta Metall. 27, 235-241.
Pond, R. C. \& Vitek, V. (1977). Proc. R. Soc. London Ser. A, 357, 453-470.
Pond, R. C. \& Vlachavas, D. S. (1983). Philos. Trans. R. Soc. London. Ser. A, 386, 95-143.
Seitz, F. (1936). Ann. Math. 37, 17-28.
Shubnikov, A. V. \& Koptsik, V. A. (1974). Symmetry in Science and Art. New York: Plenum.
Smith, D. A., Vitek, V. \& Pond, R. C. (1977). Acta Metall. 25, 475-483.
Vlachavas, D. S. (1980). Symmetry and Structure of Bicrystals. PhD Thesis, Univ. of Liverpool.
Vlachavas, D. S. (1984). Acta Cryst. A40, 213-221.

Acta Cryst. (1984). A40, 213-221

Composite Symmetry Formed by Two Identical Point Groups With Common Origin

By D. S. Vlachavas*
Department of Metallurgy and Materials Science, The University of Liverpool, PO Box 147, Liverpool L69 3BX, England

(Received 17 December 1982; accepted 12 October 1983)

Abstract

A group-theoretical method is presented that enables the derivation of the symmetry of any composite created by the superposition of two identical point

[^0]0108-7673/84/030213-09\$01.50
groups. The invariant points of the two components are considered in coincidence and the composite symmetry is expressed as the intersection of two sets of symmetry operations. The first set contains the symmetry operations common in the components when their mutual disposition is taken into account, whereas in the second set belong the additional
symmetry operations relating the two equivalent components. The existence of such symmetrizing operations is revealed particularly clearly by using the framework of two-coloured symmetry. Analytical expressions for the operations of each set are derived in terms of the mutual orientation of the two components and theorems are given for the determination of the composite point symmetry when the components are rotated relative to each other along a direction passing through their origin. The application of the methodology is demonstrated by considering particular examples and a table of all possible composite symmetry groups associated with superpositions of the 32 crystallographic point groups is given.

1. Introduction

In the study of the symmetry of composites we first note that they are characterized by a specific combination of two or more components. The symmetry of such complex systems depends on the number, symmetry, relative position and relative orientation of their parts. Thus, in order to express relations between the components and the whole we classify the composites into several categories. In this way, we are able to correlate the composite symmetry to, say, the number of components of certain symmetry and specific combination. Or, we can study the symmetry of a composite in relation to only the relative position and orientation of its components which are of given number and symmetry.

The composites considered in this paper consist of two identical finite components of crystallographic symmetry having their invariant points in coincidence. The symmetry of such composites depends only on the relative orientation and point symmetry of the components. In other words, we consider two identical point groups superposed so that they have common origin and we investigate the various types of point symmetry created as the component groups are rotated relative to each other along a direction passing through their origin.

This problem is of particular interest in the investigation of the symmetry of bicrystals. Pond \& Bollmann (1979) proposed that a bicrystal can be considered, for the purpose of symmetry studies, as the composite created by the superposition of two semiinfinite crystals. Also, they pointed out that the point symmetry of the bicrystal can be determined by inspection of the configuration formed by two geometrical figures modelling the symmetry of the semi-infinite crystals. However, the relationship between composite point symmetry and relative rotation of the components can be investigated analytically by the group-theoretical approach presented in this paper.

2. Notation

In this work concepts from two-coloured symmetry are extensively used. The symbols of the two-coloured groups are constructed according to the HermannMauguin extended scheme, the fundamentals of which are given by Koptsik (1966) and Shubnikov \& Koptsik (1974). Colour-reversing symmetry elements, as well as colour-reversing symmetry operations, are designated by a 'prime' which implies that the corresponding ordinary element or operation is followed by colour exchange.

The symbols of the symmetry operations are given according to the scheme proposed by Donnay \& Donnay (1972). Thus, the Hermann-Mauguin symbols that normally refer to symmetry axes also represent symmetry operations provided the power of the operation be explicitly stated. By convention the rotation of the symmetry axes (and, therefore, of the corresponding symmetry operations) is considered in the right-handed (anticlockwise) sense. As to the symmetry operations of inversion and reflection the letters i and s provide self-explanatory symbols.* Subscripts are used to indicate the direction of the symmetry element or operation; the same subscripts on m or s indicate the direction of the normal to the plane of reflection.

3. The geometrical interpretation of the NeumannCurie principle

The basis of the proposed group-theoretical approach is the geometrical interpretation of the NeumannCurie principle (see e.g. Shubnikov \& Koptsik, 1974) outlined in this section. Consider the simple case of superposing the symmetries of a square and a rectangle where their geometrical centres and twofold symmetry axes coincide. The square (on a one-sided plane) has symmetry $G_{1}=4 \mathrm{~mm}$ while the rectangle has symmetry $G_{2}=2 \mathrm{~mm}$. If the planes of symmetry of the two figures coincide (Fig. 1a), then the composite as a whole possesses the symmetry of the highest common subgroup of these two groups, namely $G=2 \mathrm{~mm}$. It should be mentioned, however, that in determining the symmetry of a composite the mutual disposition of its components must be taken into account. This is shown in Fig. $1(b)$ where the two figures have now no common planes of symmetry and, hence, the highest common subgroup for the particular orientation is $G^{\prime}=2$ (i.e. the common twofold axis perpendicular to the plane of the figures).

The process of forming a composite from nonequivalent parts is accompanied by the 'dissymmetrization' of the system since it leads to a reduction in

[^1]the symmetry of the whole in comparison with the symmetry of the parts. The opposite process, 'symmetrization', occurs on forming composites from equivalent parts. Fig. $l(c)$ shows a figure composed of two identical rectangles ($G_{1}=G_{2}=2 \mathrm{~mm}$) which have common centres and are rotated by 90° relative to each other. In this case the symmetry of the composite is $G=4 \mathrm{~mm}$. Thus, if the components are geometrically identical then the symmetry group of the composite may be a supergroup of the symmetry groups of the components.

As was mentioned above a necessary condition imposed by the Neumann-Curie principle is that the relative orientation of the components must be taken into account in order to determine the symmetry operations of the composite. An immediate consequence of this condition is illustrated in Fig. $1(c)$. After the superposition of the two rectangles the twofold axes of the separate components coincide and, hence, the composite has also a twofold symmetry axis. But when superposed there is further symmetry in the composite: any point of one component is related to a similar point of the other component by the rotation which relates the two parts. Therefore, the composite has the common symmetry of the individuals augmented by the operation of the rotation which describes their mutual orientation.

This example indicates that in the case of symmetrization the composite may contain symmetry elements created not by the coincidence but by the appropriate orientation of the symmetry elements of

Fig. 1. Geometrical interpretation of the Neumann-Curie principle. The superposition of the point groups 4 mm (square) and 2 mm (rectangle) leads to a composite with symmetry either 2 mm [when 4 mm and 2 mm have common mirror planes, (a)] or $2(b)$. On the other hand, the superposition of the two rectangles in (c) corresponds to symmetrization and yields a composite with symmetry 4 mm .
the components. The difference between the two kinds of symmetry operations present in a composite becomes straightforward if we introduce the concept of colour-reversing (or antisymmetry) operations. These are symmetry operations which transfer the object to a symmetrically related position and change its colour from white to black or vice versa. For employing this concept one of the components is designated 'white' and the other 'black'; this designation is, however, quite arbitrary and there is no difference between a white and a black point except that they belong to different components. Superposition of the white and black components creates a 'dichromatic composite' with symmetry generally different to that of the components. This is because (a) symmetry operations parallel to one another in both the white and black components are conserved as ordinary symmetry operations; and (b) symmetry operations of the components not parallel after the superposition are suppressed; yet they can give rise to colour-reversing operations in the composite.

4. Group-theoretical formulation of the superposition of point symmetries

In order to study the point symmetry of a dichromatic composite we consider its white component fixed in orientation and position so that it acts as the reference component. The dichromatic composite is then obtained by the operation $\{[x y z] / \theta\}^{\prime}$, which means that a component originally coincident with the reference component and with the same colour is rotated by an angle θ about $[x y z]$ (using the white coordinate system) and subsequently undergoes colour reversal from white to black (as represented by the prime). The operation $\{[x y z] / \theta\}$ describes the misorientation (i.e. the misalignment between the two individuals of the composite) of the two components.

The following notation is now introduced. The point group of the white component is designated G_{w} with elements, expressed relative to the white coordinate system, g_{i} and of order r_{w}. Also, the point group of the black component, designated G_{b}, is of order $r_{b}=r_{w}$ and its elements, expressed relative to the black coordinate system, are identical to $g_{i}, i=1,2, \ldots, r_{w}$.

After rotation $\{[x y z] / \theta\}^{\prime}$ the two components are brought out of alignment and the black and white points are not in coincidence except the common origin. The symmetry operations of G_{w} are g_{i}, whereas those of G_{b} are expressed relative to the white coordinate system by $R^{\prime} g_{i} R^{\prime-1}$, where R^{\prime} is the matrix describing the vector transformation of the black component.* The composite obtained by $\{[x y z] / \theta\}^{\prime}$ will, in general, contain ordinary and colour-reversing symmetry operations as explained below.

[^2]
4.1. Ordinary symmetry operations of the composite point group

An ordinary symmetry operation describes, by definition, the relationship between points of the same colour. Thus, such an operation is present in the dichromatic composite only when it expresses a geometrical relationship which is satisfied by the set of white points as well as by the set of black points. In other words, this symmetry operation must be common for the white and black components since the rotation $\{[x y z] / \theta\}^{\prime}$ changes only the misorientation of the components but does not alter the black or white configurations. Therefore, the necessary and sufficient condition for an ordinary symmetry operation to be present in the composite point group G_{c} is that, after rotation, identical elements of G_{w} and G_{b} are coincident. This implies, of course, that the elements of G_{w} and G_{b} are expressed relative to the same coordinate system which in our considerations is the system of the white component unless specifically stated to be otherwise. Consequently, the following theorem is self-evident.

Theorem 1: The ordinary symmetry operations in the dichromatic composite point group are the only elements of G_{w} which satisfy the relation $g_{i}=R g_{j} R^{-1}$, where R is the matrix describing the vector transformation of the black component and g_{i}, g_{j} are expressed relative to the coordinate system of the white component.

Now, let D_{0} be the set of elements of G_{w} satisfying the relation of theorem 1 . We can prove the following theorem (the proofs of the theorems are given for clarity in the Appendix*).

Theorem 2: The ordinary symmetry operations of the composite point group form a subgroup (trivial or not) of the point group of the white component.

The elements of the group D_{0} are denoted by h_{i}, and they satisfy the relation

$$
\begin{equation*}
h_{i}=R h_{j} R^{-1} . \tag{1}
\end{equation*}
$$

Theorem 2 immediately yields (see Appendix) the following.

Theorem 3: The order of the composite point group, r, is equal to $2 / \kappa$ times the order of the point group G_{w} where κ is a positive integer.

A consequence of the last theorem is that only symmetry operations of order equal to or less than twice the order of the point group G_{w} are present in a composite point group. The equality, however, holds only when the composite point group is a cyclic group. Also, as was mentioned in the proof of

[^3]theorem 3, the order of the composite point group is always twice the order of D_{0}. Now, since D_{0} is a subgroup of G_{w}, the lowest and highest orders of D_{0} correspond to the trivial subgroups of G_{w}. Therefore, we have the following.

Theorem 4: The lowest order of the composite point group is 2 and the highest is $2 r_{w}$ where r_{w} is the order of the white point group.

A dichromatic composite with the lowest possible symmetry can be created by the exact superposition of two point groups with symmetry $G_{w}=G_{b}=1$. In this case the composite point group is $G_{c}=11^{\prime}$ (grey point group). More interesting, however, is the case of a composite with the highest symmetry $r=2 r_{w}$. Such a case corresponds to the process of symmetrization and a particular example is shown in Fig. 1(c) where $G_{w}=G_{b}=2 \mathrm{~mm}$ with order $r_{w}=4$. Thus, if the components are regarded as white and black, the appropriate orientation of the two superposed figures results in a composite with symmetry $G_{c}=4^{\prime} \mathrm{mm}^{\prime}$ of order $r=2 r_{w}=8$.

4.2. Colour-reversing symmetry operations of the composite point group

Our attention is now focused on the colourreversing symmetry operations of the composite point group. We need to find an expression describing the colour-reversing transformations which may be present in the composite of arbitrary misorientation and, then, we must determine the conditions under which these transformations, together with the ordinary operations given by theorem 1, form a group. We start by noting that the composite point group contains two sets of general points which, according to the discussion in the foregoing section, are

$$
\begin{aligned}
& \text { white points: }\left\{h_{1} \mathbf{w}, h_{2} \mathbf{w}, \ldots, h_{r_{0}} \mathbf{w}\right\} \\
& \text { black points: }\left\{h_{1} \mathbf{b}, h_{2} \mathbf{b}, \ldots, h_{r_{0}} \mathbf{b}\right\} \text {, }
\end{aligned}
$$

where w and b are the white and black 'starting' points respectively, and $h_{i}\left(i=1,2, \ldots, r_{0}\right.$, where r_{0} is the order of D_{0}) are the elements of the group D_{0}. The relationship between the vectors \mathbf{w} and b can be determined if it is borne in mind that the black points are obtained by a rotation of the white ones. Thus, $\mathbf{b}=R g_{k} \mathbf{w}$, where g_{k} is a symmetry operation of G_{w}; g_{k} may or may not be an element of D_{0}. Therefore, the above sets of points can be written as

```
white points: {\mp@subsup{h}{1}{}\mathbf{w},\mp@subsup{h}{2}{}\mathbf{w},\ldots,\mp@subsup{h}{\mp@subsup{r}{0}{}}{\mathbf{w}}}
black points: {\mp@subsup{h}{1}{}R\mp@subsup{g}{k}{}\mathbf{w},\mp@subsup{h}{2}{}R\mp@subsup{g}{k}{}\mathbf{w},\ldots,\mp@subsup{h}{\mp@subsup{r}{0}{}}{}R\mp@subsup{g}{k}{}\mathbf{w}}.
```

Any colour-reversing symmetry element of the composite point group must relate, by definition, at least a white and a black point of the above sets to each other. Consequently, the colour-reversing transformations c_{m} are given by $c_{m}=h_{i} g_{k}^{-1} R^{-1} h_{j}^{-1}$. But, since $h_{j}^{-1} \in D_{0}$ there is an element $h_{n} \in D_{0}$ such that h_{j}^{-1} and h_{n} satisfy (1): $h_{j}^{-1}=R h_{n} R^{-1}$. Thus, replacing
h_{j}^{-1} by $R h_{n} R^{-1}$ we have $c_{m}=h_{i} g_{k}^{-1} h_{n} R^{-1}$, or

$$
\begin{equation*}
c_{m}=h_{i} g_{m} h_{n} R^{-1} \tag{2}
\end{equation*}
$$

where g_{m} is the reverse element of g_{k} in G_{w}. As was mentioned above, g_{k}, and therefore $g_{m} \equiv g_{k}^{-1}$, may or may not belong to D_{0}. Thus, we must consider two cases:
(i) $g_{m} \in D_{0}$, i.e. $g_{m} \equiv h_{m}$: then the colour-reversing transformations are given by

$$
\begin{equation*}
c_{i}=h_{i} R^{-1} \tag{3a}
\end{equation*}
$$

with h_{i} an element of D_{0}, and
(ii) $g_{m} \notin D_{0}$: taking $g_{m} h_{n}=h_{q} g_{p}$ we can express (2) in the form $c_{m}=h_{i} h_{q} g_{p} R^{-1}$, or

$$
\begin{equation*}
c_{j}=g_{j} R^{-1} \tag{3b}
\end{equation*}
$$

where g_{j} belongs to G_{w} but not to D_{0} (i.e. g_{m} belongs to the set $G_{w}-D_{0}$).

However, not all transformations of the type (3a) or (3b) may occur as symmetry operations of the composite point group. Relations ($3 a$) and ($3 b$) lead, though, to an algorithm, as yet incomplete, for finding the point group of a composite formed by two components in given misorientation R. We consider the point group G_{w} of the components and we take its subgroups $D_{0, i}$ in sequence of decreasing order. For each $D_{0, i}$ which is invariant by the rotation R we form the products $c_{i}=h_{i} R^{-1}$ and $c_{j}=g_{j} R^{-1}$. If the set of elements h_{i} and $h_{i} R^{-1}$ or h_{i} and $g_{j} R^{-1}$ forms a group, then this is the required composite point group associated with the subgroup $D_{0, i}$. This algorithm would allow us to derive the point symmetry of the dichromatic composite obtained by the given misorientation R. However, the determination of the composite point group by means of the proposed algorithm is extremely laborious, since it involves checking the group property for many sets of elements.

In order to perfect an algorithm we prove the following theorems which make it easier to pick out rotations for which a composite point group is automatically formed. For this, we investigate the conditions under which the colour-reversing transformations given by ($3 a$) or ($3 b$) are indeed symmetry operations of the composite point group. The set of the colour-reversing transformations c_{m} is denoted by D_{c} and we require that the set of transformations $D=D_{0}+D_{c}$ is a group in the mathematical sense of the word (the summation is to be understood as a juxtaposition of elements).
4.2.(a) Case I ($c_{m}=h_{m} R^{-1}$). According to (3a) the colour-reversing transformations are given by $c_{m}=$ $h_{m} R^{-1}$, where h_{m} belongs to D_{0}, and the rotation yielding a composite point group is determined by the following (Appendix).

Theorem 5: The set $D=D_{0}+D_{c}=\left\{h_{1}, h_{2}, \ldots, h_{r_{0}}\right.$, $\left.h_{1} R^{-1}, h_{2} R^{-1}, \ldots, h_{r_{0}} R^{-1}\right\}$ is a group if the rotation R satisfies the relation $R^{2}=h_{\alpha}$, where h_{α} is a given element of D_{0}, and leaves the subgroup D_{0} of G_{w} invariant.
4.2.(b) Case II ($c_{m}=g_{m} R^{-1}$). In the case of ($3 b$) the colour-reversing transformations are given by $c_{m}=g_{m} R^{-1}$ with g_{m} belonging to $G_{w}-D_{0}$. This means that in this case the set D is associated not only with the elements h_{i} of D_{0} but also with r_{0} elements g_{m} of $G_{w}-D_{0}$. Now, we introduce the symbol D_{2} for the set containing all the operations of the white point group G_{w} which are included (either as ordinary operations or in colour-reversing transformations through the relation $c_{m}=g_{m} R^{-1}$) in the set D, i.e. $D_{2}=\left\{h_{1}, h_{2}, \ldots, h_{r_{0}}, g_{1}, g_{2}, \ldots, g_{r_{0}}\right\}$. The elements of the set $D_{2}-D_{0}$ are denoted by $f_{i}, i=1,2, \ldots, r_{0}$ so that $D_{2}=\left\{h_{1}, h_{2}, \ldots h_{r_{0}}, f_{1}, f_{2}, \ldots, f_{r_{0}}\right\}$ with f_{i} belonging to $G_{w}-D_{0}$. We have the following (Appendix).

Theorem 6: The set $D=\left\{h_{1}, h_{2}, \ldots, h_{r_{0}}, f_{1} R^{-1}\right.$, $\left.f_{2} R^{-1}, \ldots, f_{r_{0}} R^{-1}\right\}$ is a group if: (a) D_{2} is a factor 2 supergroup of D_{0} and at the same time a subgroup of $G_{m}(b)$ the rotation R leaves D_{0} invariant, and (c) the rotation R satisfies the relation $f_{\alpha} R^{-1} f_{\alpha} R^{-1}=h_{\beta}$, where h_{β} is an element of D_{0} and f_{α} an element of $G_{w}-D_{0}$ such that $f_{i}=h_{i} f_{\alpha}$ for any f_{i} of $D_{2}-D_{0}$.

5. Algorithm for the determination of composite point groups

Now we can formulate the final algorithm for finding the point symmetry of a dichromatic composite obtained by the superposition of two identical point groups with common origin. Two cases are to be considered: (1) R is a given rotation; and (2) R is any rotation, in which case we seek the distinct composite point groups corresponding to different misorientations of the two components.
(1) According to theorem 1 , the ordinary symmetry operations of the composite point group are these elements of G_{w} which are invariant with respect to the rotation R. Thus, we form products of the type $R g R^{-1}$ and allow g to be in turn each of the elements of the group G_{w}. The elements g_{i} for which $R g_{i} R^{-1}$ belongs to G_{w} will make up the group D_{0}. Next, we examine the form of the rotation R. If R^{2} equals an element of D_{0}, then the composite point group is, according to theorem $5, D=D_{0}+D_{0} R^{-1}$. Otherwise, we take all subgroups of G_{w} which are index 2 supergroups of D_{0}; we denote them $D_{2, i}$ with elements $f_{i j}$, $j=1,2, \ldots, r_{0}$. For each $D_{2, i}$ we form the product $f_{i j} R^{-1} f_{i j} R^{-1}$ with $f_{i j}$ an element of $D_{2, i}$ If $f_{i j} R^{-1} f_{i j} R^{-1}$ belongs to D_{0} then the composite point group is, according to theorem $6, D=D_{0}+D_{0} f_{i j} R^{-1}$.
(2) In the second case R is not fixed but it varies over the range of permissible misorientation relationships of the two identical point groups, and we want

Table 1. Determination of the composite point group formed by the superposition of two cubic point groups $m 3 m$ with misorientation $\left\{[001] / 45^{\circ}\right\}$

g_{i}	$R g_{i} R^{-1}$	$h_{i} R^{-1}$	g_{i}	$\mathrm{Rg}_{\mathrm{i}} \mathrm{R}^{-1}$	$h_{i} R^{-1}$	g_{i}	$\mathrm{Rg}_{i} \mathrm{R}^{-1}$	$h_{i} \mathrm{R}^{-1}$	g_{i}	$R g_{i} R^{-1}$	$h_{i} R^{-1}$
1	1	$8{ }^{10}$	211			i	i	$\overline{8}_{001}^{1}$	${ }^{\text {Ti01 }}$		
$3{ }_{\text {171 }}^{1}$			2011			$3{ }^{3}$			s_{011}		
$3{ }^{2} 1 \mathrm{I} 1$			$2{ }_{\text {Oin }}^{1}$			$\overline{3}_{1 i 1}^{5}$			s_{011}		
$3{ }_{111}^{11}$			$4{ }_{001}^{1}$	$4{ }_{001}^{1}$	$88_{0,1}^{3}$	$3!11$			$4^{4}{ }^{3}$	$\overline{4}_{\substack{0}}^{1}$	$\overline{8}_{0}^{7}$
311			$4{ }^{3} 3$	4001	8001	$\overline{3}_{111}$			$\overline{4}^{3} 01$	$\overline{4}_{001}^{3}$	$\overline{8}_{001}^{3}$
3111			$4{ }_{010}^{10}$			3111			${ }_{4}{ }_{0}^{10}$		
$3{ }^{2} 111$			$4{ }_{010}^{3}$			$3{ }^{\text {cil1 }}$			$\overline{4}_{010}^{3}$		
$3 \frac{117}{17}$			$4{ }_{100}^{1}$			$3{ }^{1} 17$			$\overline{4}_{100}^{10}$		
$3{ }^{2} 1{ }^{\text {IT1 }}$			4_{100}^{3100}			$3{ }^{\text {sinil }}$			$\overline{4}_{100}^{3}$		
$2{ }_{110}$	$2{ }_{100}^{1}$	$2{ }^{1}$	$2{ }_{100}^{1}$	$2 \frac{1}{110}$	$2{ }^{1 .}$	s_{110}	s_{100}	s_{ν}^{\prime}	s_{100}	S_{110}	s^{\prime}
$2 \frac{1}{110}$	2010	$2{ }^{11^{\prime}}$	$2{ }_{010}^{10}$	$2{ }_{110}$	$2{ }_{5}^{1}$	$s_{\text {Tio }}$	s_{010}	s_{ρ}^{\prime}	s_{010}	s_{110}	s_{s}^{\prime}
$2{ }_{101}^{1}$			22_{001}^{1}	$2{ }^{1} 01$	8001	s_{101}			s_{001}	s_{001}	$\overline{8}_{001}^{5}$

Note: The subscripts ρ, τ, ν, ξ correspond to the directions $[\sqrt{2+\sqrt{2}}, \sqrt{2-\sqrt{2}}, 0],[\sqrt{2-\sqrt{2}}, \sqrt{2+\sqrt{2}}, 0],[-\sqrt{2-\sqrt{2}}, \sqrt{2+\sqrt{2}}, 0],[-\sqrt{2+\sqrt{2}}, \sqrt{2-\sqrt{2}}, 0]$, respectively. These directions have an angular distance of 22.5° in the anticlockwise sense from the directions [100], [110], [010], and [$\overline{1} 10$], respectively.
to determine the distinct composite point groups obtained. This is achieved by the following procedure. We start by taking the list of subgroups (trivial or not) of the given point group $G_{w .}$. For each subgroup D_{0} rotations can be found leading to at least one composite point group. Such rotations are determined according to either theorem 5 or theorem 6 .

We consider first the case where the colourreversing transformations are given by $c_{i}=h_{i} R^{-1}$ with h_{i} belonging to D_{0}. The composite point groups corresponding to D_{0} are then determined by taking separately each element of D_{0} and applying theorem 5 . Thus, for each subgroup $D_{0, i}$ and each $h_{j} \in D_{0, i}$ we obtain a set of rotations R_{k} such that (a) $R_{k}^{2}=h_{j}$ and (b) $R_{k} D_{0, i} R_{k}^{-1}=D_{0, i}$ (i.e. $D_{0, i}$ is invariant with respect to R_{k}). For any such rotation R_{k} the composite point group has the form $D=D_{0, i}+D_{0, i} R_{k}^{-1}$.

Finally, there remains the consideration of the case of composite groups with colour-reversing operations of the type $c_{i}=f_{i} R^{-1}$. According to theorem 6 a composite group $D=D_{0}+D_{0} f_{i} R^{-1}$, with $f_{i} \in D_{2}-D_{0}$, is formed for rotations R such that $f_{i} R^{-1} f_{i} R^{-1} \in D_{0}$. We note, however, that if we substitute $R_{1}^{-1}=f_{i} R^{-1}$ then this case is reduced to the one mentioned just above. Thus, in order to determine the rotations yielding composite groups of the form $D=D_{0}+D_{0} f_{i} R^{-1}$ we work as follows. We consider each composite group $D=D_{0}+D_{0} R_{\alpha}^{-1}$ separately and we take the index 2 extensions of $D_{0}: D_{2}=D_{0}+D_{0} f_{i}$. For each such extension belonging to G_{w} a composite point group $D=D_{0}+D_{0} f_{i} R^{-1}$, isomorphous to $D=D_{0}+D_{0} R_{\alpha}^{-1}$, will correspond to the rotation $R^{-1}=f_{i}^{-1} R_{\alpha}^{-1}=$ $\left(R_{\alpha} f_{i}\right)^{-1}$.

6. Application of the algorithm

We consider now two examples for demonstrating the application of the proposed algorithm. In the first example the point group of the two components is
the cubic group $G_{w}=m 3 m$ and the misorientation of the components is described by the rotation $\left\{[001] / 45^{\circ}\right\}^{\prime}$. The reference coordinate system is orthogonal and has the standard setting (International Tables for X-ray Crystallography, 1965) with respect to the white point group. The group G_{w} contains 48 elements given in Table 1 under the heading g_{i}. The ordinary symmetry elements of the dichromatic composite are those elements of G_{w} for which $R g_{i} R^{-1}$ belongs to G_{w} with

$$
R=\left(\begin{array}{ccc}
\sqrt{2} / 2 & -\sqrt{2} / 2 & 0 \\
\sqrt{2} / 2 & \sqrt{2} / 2 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Thus, according to the second column of Table 1, we have $D_{0}=4 / \mathrm{mmm}$. The rotation R satisfies the equation $R^{2}=4_{001}^{1}$ and, therefore, the composite point group is of the form $D=D_{0}+D_{0} R^{-1}$. The colourreversing elements of this group are given in the column $h_{i} R^{-1}$ in Table 1. We note that in the dichromatic composite there is an eightfold colour-reversing axis (i.e. the set of symmetry operations $1,88_{001}^{1}, 4_{001}^{1}$, $\left.8_{001}^{3}, 2_{001}^{1}, 2_{001}^{1}, 8_{001}^{5^{\prime}}, 4_{001}^{3}, 8_{001}^{7}\right)$ and according to the tables given by Vlachavas (1980) (see also Vlachavas, 1984; following paper) the composite point group is $8^{\prime} / \mathrm{mm}^{\prime} \mathrm{m}^{\prime}$. This example illustrates the possibility of non-crystallographic composite point groups (see below).

In the second example considered here we determine the distinct composite groups corresponding to $G_{w}=222=\left\{1,2_{100}^{1}, 2_{010}^{1}, 2_{001}^{1}\right\}$. Its subgroups are $D_{0,1} \equiv$ $G_{w}, D_{0,2}=\left\{1,2_{1_{00}}^{1}\right\}, D_{0,3}=\left\{1,2_{010}^{1}\right\}, D_{0,4}=\left\{1,2_{001}^{1}\right\}$, $D_{0,5}=\{1\}$. For $D_{0,1}$ and $h_{\alpha}=1$, the relation $R^{2}=1$ is satisfied for a proper or improper rotation of the form $\left\{[x y z] / 360^{\circ}\right\}^{\prime}$ or $\left\{[x y z] / 180^{\circ}\right\}^{\prime}$. The former corresponds to either the anti-identity operation 1^{\prime} or the antiinversion operation $\overline{1}^{\prime}$ and we note that both leave $D_{0,1}$ invariant. Thus, we have $D=D_{0,1}+D_{0,1} 1^{\prime}=2221^{\prime}$ and $D=D_{0.1}+D_{0.1} \overline{1}^{\prime}=m^{\prime} m^{\prime} m^{\prime}$ correspondingly.

The rotation $\left\{[x y z] / 180^{\circ}\right\}^{\prime}$, on the other hand, corresponds to either a twofold colour-reversing operation along $[x y z]$ or a colour-reversing reflection perpendicular to $[x y z]$, and they leave $D_{0,1}$ invariant only when $[x y z]$ is along special directions. Thus, the operation $\left\{[x y z] / 180^{\circ}\right\}^{\prime}$ will lead to a composite point group $D=D_{0,1}+D_{0,1} R^{-1}$ only when the rotation axis is parallel to any of the directions [100], [010], [001], [110], [110], [101], [101], [011], [011] (or their opposites). We note, however, that the proper or improper rotation $\left\{[100] / 180^{\circ}\right\}^{\prime}$ can be expressed as $2{ }_{100}^{1} 1^{\prime}$ or $s_{100} 1^{\prime}$, respectively. Consequently, these rotations will yield

$$
D=D_{0,1}+D_{0,1} 1_{100}^{1} 1^{\prime}=D_{0,1}+D_{0,1} 1^{\prime}=2221^{\prime}
$$

or

$$
\begin{aligned}
D & =D_{0,1}+D_{0,1} s_{100} 1^{\prime}=D_{0,1}+\left\{s_{100}, i, s_{010}, s_{001}\right\} 1^{\prime} \\
& =m^{\prime} \dot{m}^{\prime} m^{\prime}
\end{aligned}
$$

(and similarly for $\left\{[010] / 180^{\circ}\right\}^{\prime}$ and $\left\{[001] / 180^{\circ}\right\}^{\prime}$).
Rotation $\left\{[110] / 180^{\circ}\right\}^{\prime}$ corresponds to $2_{110}^{1^{\prime}}$ or s_{110}^{\prime} and, thus, it gives

$$
\begin{aligned}
D & =D_{0,1}+D_{0,1} 2_{110}^{1_{10}^{\prime}}=D_{0,1}+\left\{2_{110}^{1_{10}^{\prime}}, 4_{001}^{1^{\prime}}, 4_{001}^{3^{\prime}}, 2 \frac{1_{110}^{\prime}}{}\right\} \\
& =4^{\prime} 22^{\prime}
\end{aligned}
$$

or

$$
\begin{aligned}
D & =D_{0,1}+D_{0,1} s_{110}^{\prime}=D_{0,1}+\left\{s_{110}^{\prime}, \overline{4}_{001}^{\prime}, \overline{4}_{001}^{3^{\prime}}, s_{110}^{\prime}\right\} \\
& =\overline{4}^{\prime} 2 m^{\prime}
\end{aligned}
$$

(and similarly for one the proper and improper rotations along the rest of the directions mentioned above).

We turn our attention, now, to the second element of $D_{0,1}$, i.e. $h_{\alpha}=2{ }_{100}^{1}$, and the relation $R^{2}=2_{100}^{1}$ gives $R=\left\{[100] / 90^{\circ}\right\}^{\prime}$ (and $\left\{[100] / 270^{\circ}\right\}^{\prime}$). We can express R as $4_{100}^{1^{\prime}}\left(\right.$ and $4_{100}^{3^{\prime}}$) or $\overline{4}_{100}^{3^{\prime}}$ (and $\overline{4}_{100}^{1^{\prime}}$) and we obtain

$$
\begin{aligned}
D & =D_{0,1}+D_{0,1} 4_{100}^{1^{\prime}}=D_{0,1}+\left\{4_{100}^{1^{\prime}}, 4_{100}^{3^{\prime}}, 2_{011}^{1^{\prime}}, 2_{01 \mathrm{I} 1}^{\prime}\right\} \\
& =D_{0,1}+D_{0,1} 4_{100}^{3^{\prime}}=4^{\prime} 22^{\prime}
\end{aligned}
$$

or

$$
\begin{aligned}
D & =D_{0,1}+D_{0,1} \overline{4}_{100}^{3^{\prime}}=D_{0,1}+\left\{\overline{4}_{100}^{3^{\prime}}, \overline{4}_{100}^{1^{\prime}}, s_{011}^{\prime}, s_{0 \overline{1} 1}^{\prime}\right\} \\
& =D_{0,1}+D_{0,1} \overline{4}_{100}^{\prime^{\prime}}=\overline{4}^{\prime} 2 m^{\prime}
\end{aligned}
$$

Similarly, the remaining elements of $D_{0.1}$, i.e. $2{ }_{010}^{1}$ and 2_{001}^{1}, will yield the composite point groups $4^{\prime} 22^{\prime}$ (for the proper rotations $\left\{[010] / \pm 90^{\circ}\right\}^{\prime}$ and $\left.\left\{[001] / \pm 90^{\circ}\right\}^{\prime}\right)$ and $\overline{4}{ }^{\prime} 2 m^{\prime}$ (for the corresponding improper rotations).

Next, we have to consider the subgroups $D_{0,2}, D_{0,3}$, $D_{0,4}$. However, we determine only the composite point groups associated with $D_{0,2}$, and we note that the algorithm can be applied identically for $D_{0,3}$ and $D_{0,4}$. For $D_{0,2}=\left\{1,2_{100}^{1}\right\}$ and $h_{\alpha}=1$ we have that R must be $\left\{[x y z] / 360^{\circ}\right\}^{\prime},\left\{[100] / 180^{\circ}\right\}^{\prime}$ or $\left\{[0 y z] / 180^{\circ}\right\}^{\prime}$. The first two rotations have already been considered above and, thus, we have to examine only $\left\{[0 y z] / 180^{\circ}\right\}^{\prime}$ here.

This rotation may be proper or improper, expressed as $2_{0 y z}^{1^{\prime}}$ or $s_{0 y z}^{\prime}$, respectively. The composite point groups obtained are

$$
D=D_{0,2}+D_{0,2} 2_{0 y z}^{1^{\prime}}=\left\{1,2_{100}^{1}, 2_{0 y z}^{1^{\prime}}, 2_{0 \bar{z} y}^{1^{\prime}}\right\}=22^{\prime} 2^{\prime}
$$

or

$$
D=D_{0,2}+D_{0,2} s_{0 y z}^{\prime}=\left\{1,2_{100}^{1}, s_{0 y z}^{\prime}, s_{0 z y}^{\prime}\right\}=2 m^{\prime} m^{\prime} .
$$

For the subgroups $D_{0.3}$ and $D_{0.4}$ the groups $22^{\prime} 2^{\prime}$ and $2 m^{\prime} m^{\prime}$ are obtained by the rotations $\left\{[x 0 z] / 180^{\circ}\right\}$ and $\left\{[x y 0] / 180^{\circ}\right\}^{\prime}$, respectively. For $D_{0,2}=\left\{1,2_{100}^{1}\right\}$ and $h_{\alpha}=21_{100}^{1}$ we have R is $\left\{[100] / 90^{\circ}\right\}^{\prime}$, which, however, has already been considered above.
The remaining subgroup $D_{0,5}=\{1\}$ will yield two rotations: $\left\{[x y z] / 360^{\circ}\right\}^{\prime}$ (already considered above) or $\left\{[x y z] / 180^{\circ}\right\}^{\prime}$. The latter corresponds to $2_{x y z}^{1^{\prime}}$ or $s_{x y z}^{\prime}$ and, thus, $D=D_{0,5}+D_{0,5} 2_{x y z}^{1^{\prime}}=\left\{1,2_{x y z}^{1^{\prime}}\right\}=2^{\prime}$ or $D=$ $D_{0,5}+D_{0,5} s_{x y z}^{\prime}=\left\{1, s_{x y z}^{\prime}\right\}=m^{\prime}$, respectively.

Finally, we determine the rotations corresponding to theorem 6. Let the composite point group $22^{\prime} 2^{\prime}=$ $\left\{1,2_{001}^{1}, 2_{x 0 z}^{1^{\prime}}, 2_{z 0 x}^{1^{\prime}}\right\}=D_{0,4}+D_{0,4} R^{-1}$, where R is the proper rotation $\left\{[x y 0] / 180^{\circ}\right\}^{\prime}$. The point group $G_{w}=$ 222 can be written as $222=D_{0,4}+D_{0,4} 2_{100}^{1}=$ $D_{0,4}+D_{0,4} 2_{010}^{1}$. Thus, the composite group $22^{\prime} 2^{\prime}$ can be obtained not only by $\left\{[x y 0] / 180^{\circ}\right\}^{\prime}$ but also by $\left\{[x y 0] / 180^{\circ}\right\}^{\prime} 2_{100}^{1}$ and $\left\{[x y 0] / 180^{\circ}\right\} 2_{010}^{1}$. Now, the direction cosines of $[x y z]$ are $c_{1}=\cos \theta_{1}, c_{2}=\sin \theta_{1}$ and $c_{3}=0$ where θ is the angle between [100] and [$x y 0]$, and the rotation $\left\{[x y 0] / 180^{\circ}\right\}$ can be expressed as (Jeffreys \& Jeffreys, 1950)

$$
\begin{aligned}
R & =\left(\begin{array}{ccr}
2 c_{1}^{2}-1 & 2 c_{1} c_{2} & 0 \\
2 c_{1} c_{2} & 2 c_{2}^{2}-1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
& =\left(\begin{array}{ccr}
\cos \left(2 \theta_{1}\right) & \sin \left(2 \theta_{1}\right) & 0 \\
\sin \left(2 \theta_{1}\right) & -\cos \left(2 \theta_{1}\right) & 0 \\
0 & 0 & -1
\end{array}\right) .
\end{aligned}
$$

The rotation $\left\{[x y 0] / 180^{\circ}\right\}^{\prime} 2_{100}^{1}$ is, therefore, written as

$$
\begin{aligned}
& \left(\begin{array}{ccr}
\cos \left(2 \theta_{1}\right) & \sin \left(2 \theta_{1}\right) & 0 \\
\sin \left(2 \theta_{1}\right) & -\cos \left(2 \theta_{1}\right) & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
& \quad=\left(\begin{array}{ccc}
\cos \left(2 \theta_{1}\right) & -\sin \left(2 \theta_{1}\right) & 0 \\
\sin \left(2 \theta_{1}\right) & \cos \left(2 \theta_{1}\right) & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

or $\left\{[x y 0] / 180^{\circ}\right\}^{\prime} 2_{100}^{1}=\left\{[001] / 2 \theta_{1}\right\}^{\prime}$. Similarly, we have $\left\{[x y 0] / 180^{\circ}\right\}^{\prime} 2_{010}^{1}=\left\{[001] / 180^{\circ}+2 \theta_{1}\right\}^{\prime}$. Consequently, the composite point group $22^{\prime} 2^{\prime}=\left\{1,2_{001}^{1}, 2_{x 0 z}^{1^{\prime 2}}, 2_{z 0 x}^{1^{\prime}}\right\}$ is obtained by one of the proper rotations $\left\{[x y 0] / 180^{\circ}\right\}^{\prime}, \quad\left\{[001] / 2 \theta_{1}\right\}^{\prime}$ and $\left\{[001] / 180^{\circ}+2 \theta_{1}\right\}^{\prime}$. Table 2 summarizes the determination of the rotations corresponding to theorem 6 for the white group $G_{w}=$ 222. The first column of this table gives the composite

Table 2. Determination of the rotations corresponding to theorem 6 for the superposition of two point groups 222

Table 3. Antisymmetry point groups formed by the superposition of two identical point groups with common origin

point groups as were determined above. We must notice that the maximum-order subgroup of G_{w} is not included in Table 2, since, according to theorem 6 , this subgroup cannot yield a composite group of the form $D=D_{0}+D_{0} f_{i} R^{-1}$. Also, the trivial subgroup $D_{0,5}=\{1\}$ does not appear in Table 2. This is because the composite groups associated with $D_{0,5}$ and derived according to theorem 5 correspond to rotations of general form. Consequently, any further investigation of these rotations would not be of any significance. The second and third columns of Table 2
give the rotation R and the subgroup D_{0} associated with each composite group. In the next column the index 2 extensions of D_{0} belonging to group 222 are shown. For any such extension the distinct rotations $R_{1}=R f_{i}$ yielding the particular composite group are given in the last column of Table 2.

7. Conclusions

The application of the algorithm was demonstrated for particular examples in the foregoing section. The
superposition of any two identical point groups can be treated in a similar way. Table 3 gives the antisymmetry groups created by the superposition of a white and a black point group of crystallographic symmetry.

A number of interesting conclusions can be obtained from the application of the proposed algorithm. These are expressed in the following rules.

Rule 1: Rotations R being isomorphic to a symmetry operation of the white point group G_{w} yield a dichromatic composite with symmetry described by the grey point group $D=G_{w}+G_{w} 1^{\prime}$, where 1^{\prime} is the anti-identity operation.

Let $R=g_{\alpha} 1^{\prime}=1^{\prime} g_{\alpha}$, then the relation $R g_{i} R^{-1}=g_{j}$ becomes $g_{\alpha} 1^{\prime} g_{i} 1^{\prime} g_{\alpha}^{-1}=1^{\prime} g_{\alpha} g_{i} g_{\alpha}^{-1} 1^{\prime}=g_{j}$ and, thus, it holds for all the elements of the white point group. Also, $R^{2}=g_{\alpha} 1^{\prime} g_{\alpha} 1^{\prime}=g_{\alpha}^{2} \in G_{w}$. Consequently, this case corresponds to complete coincidence of the white and black point groups and, hence, the dichromatic point group is a grey point group isomorphic to the white point group.

Rule 2: If the point group G_{w} contains a symmetry rotation θ about a direction [$x y z$], then the rotation $\varphi=\theta / 2$ (and its symmetry equivalent) about the direction [xyz], i.e. $R=\{[x y z] / \varphi\}^{\prime}$, gives rise to a composite point group $D=D_{0}+D_{0} R^{-1}$, where D_{0} is the highest-order subgroup of G_{w} being invariant with R.

A special case of this rule is the following principle given by Pond \& Bollmann (1979): 'colour-reversing rotation axes, u^{\prime}, can only be evenfold, and arise when two ordinary $u / 2$-fold rotation axes coincide and θ is $2 \pi / u$.

Rule 3: For a mirror plane any rotation $\theta \neq 180^{\circ}$ along a direction on the plane results in a colourreversing mirror plane (or, in the case of improper rotation, in a twofold colour-reversing rotational axis), whereas for $\theta=180^{\circ}$ an $m m^{\prime} 2^{\prime}$ composite group is created.

Rule 4: In the case of two-, four- and sixfold ordinary rotational axes, rotation about a direction perpendicular to these axes results in a twofold colour-reversing rotational axis (or to a colourreversing mirror plane in the case of improper rotations) except for some special rotation angles for which higher symmetry results due to the particular symmetry.

Rule 2 implies that in the particular case of a fouror sixfold ordinary axis special rotations (i.e. $\theta=$ $2 \pi / u, u=8$ or 12 , respectively) create an eight- or 12 -fold colour-reversing axis, respectively. Therefore, the superposition of ordinary point groups may result in noncrystallographic point groups and such groups are discussed in the following paper (Vlachavas, 1984). Here it is sufficient to notice that the symbolism of these groups follows the notation scheme of the senior crystallographic point groups. Also, we must mention that the 12 -fold rotation and rotoinversion axes are designated for clarification by a line underneath their symbols.

References

Donnay, J. D. H. \& Donnay, G. (1972). Acta Cryst. A28, S110. International Tables for X-ray Crystallography (1965). Vol. I. Birmingham: Kynoch Press.
Jeffreys, H. \& Jeffreys, B. S. (1950). Methods of Mathematical Physics, 2nd ed. Cambridge Univ. Press.
Koptsik, V. A. (1966). Shubnikov Groups: Handbook on the Symmetry and Physical Properties of Crystal Structures (in Russian). Moscow: Izd. Mgu.
Pond, R. C. \& Bollmann, W. (1979). Philos. Trans. R. Soc. London, 292, 449-472.
Shubnikov, A. V. \& Koptsik, V. A. (1974). Symmetry in Science and Art. New York: Plenum.
Vlachavas, D. S. (1980). Symmetry and Structure of Bicrystals. PhD. Thesis, Univ. of Liverpool.
Vlachavas, D. S. (1984). Acta Cryst. A40, 221-225.

Acta Cryst. (1984). A40, 221-225

Two-Coloured Point and Rod Groups Containing an 8- or 12-fold Symmetry Axis

By D. S. Vlachavas*
Department of Metallurgy and Materials Science, The University of Liverpool, PO Box 147, Liverpool L69 3BX, England

(Received 17 December 1982; accepted 12 October 1983)

Abstract

Lists of 8- and 12-fold two-coloured groups consistent with zero- and one-dimensional periodic objects are given. These groups are derived as extensions of the corresponding crystallographic two-coloured groups

[^4]and are of particular interest because they are the only non-crystallographic groups obtained by the appropriate superposition of crystallographic point or rod groups.

1. Introduction

In the previous paper (Vlachavas, 1984) the symmetry of the composite obtained by the superposition of

[^0]: * Present address: 3 Kristalli Str., 11141 Athens, Greece.

[^1]: * Note that the symmetry element of mirror reflection is represented by m and the mirror operation by s. This is, in fact, the only departure from the Hermann-Mauguin notation.

[^2]: ${ }^{*} R^{\prime}$ is always a colour-reversing rotation. Bearing this in mind we shall write R instead of R^{\prime}.

[^3]: *The Appendix, giving proofs of theorems 2, 3, 5 and 6, has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38933 (5 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^4]: * Present address: 3 Kristalli Str., 11141 Athens, Greece.

