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El-, ½, ½) + appears. This means that the full set of dis- 
placements corresponding to a particular composite 

1 1 symmetry is obtained by adding the vector (~, ~, ½) in 
turn to all displacements of the set given in the first 
column. The full set of displacements contains all the 
vectors whose end-points are equivalent positions in 
the space group of the vector set associated with the 
original composite. Such a set of displacements will 
be referred to as 'set of equivalent displacements'  and 
the number of equivalent displacements in the set is 
called its rank. 

In part I we pointed out there are displacements 
which create symmetry-related composites. This is 
true for periodic composites as well. In this case, 
however, the periodicity of the spatial symmetry vari- 
ation must also be taken into account. If the transla- 
tional symmetry of the vector set of a periodic com- 
posite is described by a primitive lattice, then the set 
of equivalent displacements contains all the shift vec- 
tors which yield symmetry-related composites. On the 
other hand, for vector sets with non-primitive lattices 
the set of equivalent displacements contains in addi- 
tion displacements which are associated with iden- 
tical composites. This is the case for the above- 
considered example. The equivalent displacements 
(0, 0, z), (0, 0, ~), (½, ½, ½ + z), (½, ½, ½- z), for instance, 
yield composites with symmetry I42'2'. But all these 
composites are not symmetry equivalent. The first and 
third, as well as the second and fourth, displacements 
are interrelated by the translation vector (½, ½, ½) of the 
vector set and, hence, they correspond to identical 
composites. Thus, the number of symmetry-related 
composites depends on whether the lattice of the 
vector set (or, equivalently, of the periodic composite; 
see Buerger, 1959) is primitive or not. The number of 
symmetry-related composites is equal to the rank of 

the set of equivalent displacements divided by the 
number of  lattice points in the unit cell of the periodic 
composite. This can be expressed comprehensively 
through a detailed study of the symmetry-related 
composites obtained by general and special displace- 
ments. Such a formulation in group theoretical terms 
will, however, be discussed in a following paper. 
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Abstract 
A group-theoretical method is presented that enables 
the derivation of the symmetry of any composite 
created by the superposition of two identical point 
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groups. The invariant points of the two components 
are considered in coincidence and the composite sym- 
metry is expressed as the intersection of two sets of 
symmetry operations. The first set contains the sym- 
metry operations common in the components when 
their mutual disposition is taken into account, 
whereas in the second set belong the additional 
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symmetry operations relating the two equivalent com- 
ponents. The existence of such symmetrizing oper- 
ations is revealed particularly clearly by using the 
framework of two-coloured symmetry. Analytical 
expressions for the operations of each set are derived 
in terms of the mutual orientation of the two com- 
ponents and theorems are given for the determination 
of the composite point symmetry when the com- 
ponents are rotated relative to each other along a 
direction passing through their origin. The applica- 
tion of the methodology is demonstrated by con- 
sidering particular examples and a table of all 
possible composite symmetry groups associated with 
superpositions of the 32 crystallographic point groups 
is given. 

1. Introduction 

In the study of the symmetry of composites we first 
note that they are characterized by a specific combina- 
tion of two or more components. The symmetry of 
such complex systems depends on the number, sym- 
metry, relative position and relative orientation of 
their parts. Thus, in order to express relations between 
the components and the whole we classify the com- 
posites into several categories. In this way, we are 
able to correlate the composite symmetry to, say, the 
number of components of certain symmetry and 
specific combination. Or, we can study the symmetry 
of a composite in relation to only the relative position 
and orientation of its components which are of given 
number and symmetry. 

The composites considered in this paper consist of 
two identical finite components of crystallographic 
symmetry having their invariant points in coin- 
cidence. The symmetry of such composites depends 
only on the relative orientation and point symmetry 
of the components. In other words, we consider two 
identical point groups superposed so that they have 
common origin and we investigate the various types 
of point symmetry created as the component groups 
are rotated relative to each other along a direction 
passing through their origin. 

This problem is of particular interest in the investi- 
gation of the symmetry of bicrystals. Pond & Boll- 
mann (1979) proposed that a bicrystal can be con- 
sidered, for the purpose of symmetry studies, as the 
composite created by the superposition of two semi- 
infinite crystals. Also, they pointed out that the point 
symmetry of the bicrystal can be determined by 
inspection of the configuration formed by two 
geometrical figures modelling the symmetry of the 
semi-infinite crystals. However, the relationship 
between composite point symmetry and relative rota- 
tion of the components can be investigated analyti- 
cally by the group-theoretical approach presented in 
this paper. 

2. Notation 

In this work concepts from two-coloured symmetry 
are extensively used. The symbols of the two-coloured 
groups are constructed according to the Hermann-  
Mauguin extended scheme, the fundamentals of 
which are given by Koptsik (1966) and Shubnikov & 
Koptsik (1974). Colour-reversing symmetry elements, 
as well as colour-reversing symmetry operations, are 
designated by a 'prime' which implies that the corres- 
ponding ordinary element or operation is followed 
by colour exchange. 

The symbols of the symmetry operations are given 
according to the scheme proposed by Donnay & 
Donnay (1972). Thus, the Hermann-Mauguin sym- 
bols that normally refer to symmetry axes also rep- 
resent symmetry operations provided the power of 
the operation be explicitly stated. By convention the 
rotation of the symmetry axes (and, therefore, of the 
corresponding symmetry operations) is considered in 
the right-handed (anticlockwise) sense. As to the sym- 
metry operations of inversion and reflection the letters 
i and s provide self-explanatory symbols.* Subscripts 
are used to indicate the direction of the symmetry 
element or operation; the same subscripts on m or s 
indicate the direction of the normal to the plane of 
reflection. 

3. The geometrical interpretation of the Neumann- 
Curie principle 

The basis of the proposed group-theoretical approach 
is the geometrical interpretation of the Neumann-  
Curie principle (see e.g. Shubnikov & Koptsik, 1974) 
outlined in this section. Consider the simple case of 
superposing the symmetries of a square and a rec- 
tangle where their geometrical centres and twofold 
symmetry axes coincide. The square (on a one-sided 
plane) has symmetry G~ = 4ram while the rectangle 
has symmetry G2 = 2rnm. If the planes of symmetry 
of the two figures coincide (Fig. l a), then the com- 
posite as a whole possesses the symmetry of the 
highest common subgroup of these two groups, 
namely G = 2rnm. It should be mentioned, however, 
that in determining the symmetry of a composite the 
mutual disposition of its components must be taken 
into account. This is shown in Fig. l(b) where the two 
figures have now no common planes of symmetry 
and, hence, the highest common subgroup for the 
particular orientation is G ' =  2 (i.e. the common two- 
fold axis perpendicular to the plane of the figures). 

The process of forming a composite from non- 
equivalent parts is accompanied by the 'dissymmetriz- 
ation' of the system since it leads to a reduction in 

* Note that the symmetry element of mirror reflection is represen- 
ted by m and the mirror operation by s. This is, in fact, the only 
departure from the Hermann-Mauguin notation. 
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the symmetry of the whole in comparison with the 
symmetry of the parts. The opposite process, 'sym- 
metrization', occurs on forming composites from 
equivalent parts. Fig. l(c) shows a figure composed 
of two identical rectangles (Gi = G2=2mm) which 
have common centres and are rotated by 90 ° relative 
to each other. In this case the symmetry of the com- 
posite is G=4mrn.  Thus, if the components are 
geometrically identical then the symmetry group of 
the composite may be a supergroup of the symmetry 
groups of the components. 

As was mentioned above a necessary condition 
imposed by the Neumann-Curie principle is that the 
relative orientation of the components must be taken 
into account in order to determine the symmetry 
operations of the composite. An immediate con- 
sequence of this condition is illustrated in Fig. l(c). 
After the superposition of the two rectangles the 
twofold axes of the separate components coincide 
and, hence, the composite has also a twofold sym- 
metry axis. But when superposed there is further 
symmetry in the composite: any point of one com- 
ponent is related to a similar point of the other com- 
ponent by the rotation which relates the two parts. 
Therefore, the composite has the common symmetry 
of the individuals augmented by the operation of the 
rotation which describes their mutual orientation. 

This example indicates that in the case of sym- 
metrization the composite may contain symmetry ele- 
ments created not by the coincidence but by the 
appropriate orientation of the symmetry elements of 
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Fig. 1. Geometrical interpretation of the Neumann-Curie prin- 
ciple. The superposition of the point groups 4mm (square) and 
2mm (rectangle) leads to a composite with symmetry either 2mm 
[when 4ram and 2mm have common mirror planes, (a)] or 2 (b). 
On the other hand, the superposition of the two rectangles in 
(c) corresponds to symmetrization and yields a composite with 
symmetry 4ram. 

the components. The difference between the two kinds 
of symmetry operations present in a composite 
becomes straightforward if we introduce the concept 
of colour-reversing (or antisymmetry) operations. 
These are symmetry operations which transfer the 
object to a symmetrically related position and change 
its colour from white to black or vice versa. For 
employing this concept one of the components is 
designated 'white' and the other 'black'; this designa- 
tion is, however, quite arbitrary and there is no differ- 
ence between a white and a black point except that 
they belong to different components. Superposition 
of the white and black components creates a 'dichro- 
matic composite' with symmetry generally different 
to that of the components. This is because (a) sym- 
metry operations parallel to one another in both the 
white and black components are conserved as 
ordinary symmetry operations; and (b) symmetry 
operations of the components not parallel after the 
superposition are suppressed; yet they can give rise 
to colour-reversing operations in the composite. 

4. Group-theoretical formulation of the superposition 
of point symmetries 

In order to study the point symmetry of a dichromatic 
composite we consider its white component fixed in 
orientation and position so that it acts as the reference 
component. The dichromatic composite is then 
obtained by the operation {[xyz]/0}', which means 
that a component originally coincident with the refer- 
ence component and with the same colour is rotated 
by an angle 0 about [xyz] (using the white coordinate 
system) and subsequently undergoes colour reversal 
from white to black (as represented by the prime). 
The operation {[xyz]/O} describes the misorientation 
(i.e. the misalignment between the two individuals of 
the composite) of the two components. 

The following notation is now introduced. The 
point group of the white component is designated Gw 
with elements, expressed relative to the white coordin- 
ate system, gi and of order r~. Also, the point group 
of the black component, designated Gb, is of order 
rb = rw and its elements, expressed relative to the black 
coordinate system, are identical to gi, i = 1 ,2 , . . . ,  r~. 

After rotation {[xyz]/0}' the two components are 
brought out of alignment and the black and white 
points are not in coincidence except the common 
origin. The symmetry operations of G~ are gi, whereas 
those of Gb are expressed relative to the white coor- 
dinate system by R'giR '-~, where R'  is the matrix 
describing the vector transformation of the black 
component.* The composite obtained by {[xyz]/O}' 
will, in general, contain ordinary and colour-reversing 
symmetry operations as explained below. 

* R' is always a colour-reversing rotation. Bearing this in mind 
we shall write R instead of R'. 
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4.1. Ordinary symmetry operations of the composite 
point group 

An ordinary symmetry operation describes, by defi- 
nition, the relationship between points o f  the same 
colour. Thus, such an operation is present in the 
dichromatic composite only when it expresses a 
geometrical relationship which is satisfied by the set 
of white points as well as by the set of black points. 
In other words, this symmetry operation must be 
common for the white and bla~:k components since 
the rotation {[xyz]/0y changes only the misorienta- 
tion of the components but does not alter the black 
or white configurations. Therefore, the necessary and 
sufficient condition for an ordinary symmetry oper- 
ation to be present in the composite point group G~ 
is that, after rotation, identical elements of Gw and 
Gb are coincident. This implies, of course, that the 
elements of G~ and Gb are expressed relative to the 
same coordinate system which in our considerations 
is the system of the white component unless specifi- 
cally stated to be otherwise. Consequently, the follow- 
ing theorem is self-evident. 

Theorem 1: The ordinary symmetry operations in 
the dichromatic composite point group are the only 
elements of G~ which satisfy the relation gi = Rg~R-~, 
where R is the matrix describing the vector transfor- 
mation of the black component and gi, gj are 
expressed relative to the coordinate system of the 
white component. 

Now, let Do be the set of elements of Gw satisfying 
the relation of theorem I. We can prove the following 
theorem (the proofs of the theorems are given for 
clarity in the Appendix*). 

Theorem 2: The ordinary symmetry operations of 
the composite point group form a subgroup (trivial 
or not) of the point group of the white component. 

The elements of the group Do are denoted by hi, 
and they satisfy the relation 

h, = RhjR -~. (1) 

Theorem 2 immediately yields (see Appendix) the 
following. 

Theorem 3: The order of the composite point 
group, r, is equal to 2/K times the order of the point 
group G~, where K is a positive integer. 

A consequence of the last theorem is that only 
symmetry operations of order equal to or less than 
twice the order of the point group Gw are present in 
a composite point group. The equality, however, 
holds only when the composite point group is a cyclic 
group. Also, as was mentioned in the proof of 

* The Appendix, giving proofs of theorems 2, 3, 5 and 6, has 
been deposited with the British Library Lending Division as 
Supplementary Publication No. SUP 38933 (5 pp.). Copies may be 
obtained through The Executive Secretary, International Union of 
Crystallography, 5 Abbey Square, Chester CHI 2HU, England. 

theorem 3, the order of the composite point group is 
always twice the order of Do. Now, since Do is a 
subgroup of G~, the lowest and highest orders of Do 
correspond to the trivial subgroups of Gw. Therefore, 
we have the following. 

Theorem 4: The lowest order of the composite 
point group is 2 and the highest is 2rw, where rw is 
the order of the white point group. 

A dichromatic composite with the lowest possible 
symmetry can be created by the exact superposition 
of two point groups with symmetry G~ = Gb = 1. In 
this case the composite point group is Gc = 11' (grey 
point group). More interesting, however, is the case 
of a composite with the highest symmetry r =2r~. 
Such a case corresponds to the process of symmetriz- 
ation and a particular example is shown in Fig. l(c) 
where G~ = Gb = 2mm with order r~ = 4. Thus, if the 
components are regarded as white and black, the 
appropriate orientation of the two superposed figures 
results in a composite with symmetry Gc = 4'mm' of 
order r = 2 rw = 8. 

4.2. Colour-reversing symmetry operations of the com- 
posite point group 

Our attention is now focused on the colour- 
reversing symmetry operations of the composite point 
group. We need to find an expression describing the 
colour-reversing transformations which may be pres- 
ent in the composite of arbitrary misorientation and, 
then, we must determine the conditions under which 
these transformations, together with the ordinary 
operations given by theorem 1, form a group. We start 
by noting that the composite point group contains 
two sets of general points which, according to the 
discussion in the foregoing section, are 

white points: {hlw, h2w,..., hro w} 
black points: {hjb, h2b , . . . ,  hrob}, 

where w and b are the white and black 'starting' points 
respectively, and hi ( i - - 1 , 2 , . . . ,  ro, where ro is the 
order of Do) are the elements of the group Do. The 
relationship between the vectors w and b can be 
determined if it is borne in mind that the black points 
are obtained by a rotation of the white ones. Thus, 
b = RgkW, where gk is a symmetry operation of Gw ; 
gk may or may not be an element of Do. Therefore, 
the above sets of points can be written as 

white points: {h~w, h2w, . . . ,  h~ow} 
black points: {hiRgkW, h2RgkW,... ,  h~oRgkW}. 

Any colour-reversing symmetry element of the 
composite point group must relate, by definition, at 
least a white and a black point of the above sets to 
each other. Consequently, the colour-reversing trans- 
formations c,,, are given by c,, = higk ~ R-  ~ h i t  But, 
since hj-l~ Do there is an element hn ~ Do such that 
h~ -~ and h, satisfy (1): hj -~ = Rh,R -~. Thus, replacing 
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h f  I by R h , R  -I we have cm = higklh,,R -l ,  or 

cm = higmh,,R-~ (2) 

where g,~ is the reverse element of gk in Gw. As was 
mentioned above, gk, and therefore gm ~ gk ~, may or 
may not belong to Do. Thus, we must consider two 
cases: 

(i) g~ ~ Do, i.e. gm -= hm: then the colour-reversing 
transformations are given by 

Ci = hiR -l (3 a) 

with h~ an element of Do, and 
(ii) gm ~ Do: taking gmh,, = hqgp we can express (2) 

in the form cm = hihqgpR -l,  or 

cj = gjR -I (3b) 

where gj belongs to G~ but not to Do (i.e. g,, belongs 
to the set G ~ -  Do). 

However, not all transformations of the type (3a) 
or (3b) may occur as symmetry operations of the 
composite point group. Relations (3a) and (3b) lead, 
though, to an algorithm, as yet incomplete, for finding 
the point group of a composite formed by two com- 
ponents in given misorientation R. We consider the 
point group Gw of the components and we take its 
subgroups Do.i in sequence of decreasing order. For 
each Do,~ which is invariant by the rotation R we 
form the products ci = h~R- ~ and cj = gjR-  1. If the set 
of elements hi and hiR -~ or hi and gjR -~ forms a 
group, then this is the required composite point group 
associated with the subgroup Do.i. This algorithm 
would allow us to derive the point symmetry of the 
dichromatic composite obtained by the given mis- 
orientation R. However, the determination of the 
composite point group by means of the proposed 
algorithm is extremely laborious, since it involves 
checking the group property for many sets of ele- 
ments. 

In order to perfect an algorithm we prove the 
following theorems which make it easier to pick out 
rotations for which a composite point group is 
automatically formed. For this, we investigate the 
conditions under which the colour-reversing transfor- 
mations given by (3a) or (3b) are indeed symmetry 
operations of the composite point group. The set of 
the colour-reversing transformations Cm is denoted 
by Dc and we require that the set of transformations 
D = Do + Dc is a group in the mathematical sense of 
the word (the summation is to be understood as a 
juxtaposition of elements). 

4.2.(a) Case I (c,,, = hmR-~). According to (3a) the 
colour-reversing transformations are given by c,, = 
hmR -~, where hm belongs to Do, and the rotation 
yielding a composite point group is determined by 
the following (Appendix). 

Theorem 5: The set D = D o + D c = { h t ,  h2, . . .  , hro, 
h~R -l ,  h 2 R - l , . . . ,  hro R-~} is a group if the rotation 
R satisfies the relation R 2= h~, where h,~ is a given 
element of Do, and leaves the subgroup Do of G~ 
invariant. 

4.2.(b) Case II (cm = gmR-~). In the case of (3b) 
the colour-reversing transformations are given by 
Cm =gm R-1 with gm belonging to G~ - Do. This means 
that in this case the set D is associated not only with 
the elements hi of Do but also with ro elements gm of 
G ~ -  Do. Now, we introduce the symbol D2 for the 
set containing all the operations of the white point 
group G~ which are included (either as ordinary 
operations or in colour-reversing transformations 
through the relation Cm =gmR -~) in the set D, i.e. 
D2={hl ,  h 2 , . . . ,  h,o, gl, g 2 , . . . ,  gro}" The elements of 
the set D 2 -  O o are denoted by f~, i =  1,2 . . . .  , ro so 
that/92 = {hi, hE,. . ,  hro, f ,  f 2 ,  • • • , f ro}  withf~ belonging 
to G ~ -  Do. We have the following (Appendix). 

Theorem 6: The set D={h i ,  h 2 , . . . ,  hro, f l R  -l ,  
f2R-~,... ,f,o R-~} is a group if: (a) /92 is a factor 2 
supergroup of Do and at the same time a subgroup 
of G~, (b) the rotation R leaves Do invariant, and (c) 
the rotation R satisfies the relation fo, R-~f,~R -~= ho, 
where ho is an element of Do and f~ an element of 
Gw - Do such that f~ = h-of~ for any f~ of/92 - Do. 

5. Algorithm for the determination of composite 
point groups 

Now we can formulate the final algorithm for finding 
the point symmetry of a dichromatic composite 
obtained by the superposition of two identical point 
groups with common origin. Two cases are to be 
considered: (1) R is a given rotation; and (2) R is 
any rotation, in which case we seek the distinct com- 
posite point groups corresponding to different mis- 
orientations of the two components. 

(1) According to theorem 1, the ordinary symmetry 
operations of the composite point group are these 
elements of Gw which are invariant with respect to 
the rotation R. Thus, we form products of the type 
RgR-~ and allow g to be in turn each of the elements 
of the group G~. The elements gi for which RgiR -~ 
belongs to Gw will make up the group Do. Next, we 
examine the form of the rotation R. If R 2 equals an 
element of Do, then the composite point group is, 
according to theorem 5, D = Do + DoR -1. Otherwise, 
we take all subgroups of Gw which are index 2 super- 
groups of Do; we denote them D2,i with elements fo, 
j =  1 ,2 , . . . ,  ro. For each D2.i we form the product 
f i j R - l f i j R  - l  with f0 an element of D2. i. If f~jR-~foR -~ 
belongs to Do then the composite point group is, 
according to theorem 6, D = Do + Do foR -~. 

(2) In the second case R is not fixed but it varies 
over the range of permissible misorientation relation- 
ships of the two identical point groups, and we want 
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Table 1. Determination of  the composite point group formed by the superposition of  two cubic point 
groups m 3 m with misorientation {[001 ]/45 °} 

gi R g i R -  l h i R -  t gi R g i R -  I h i R -  I gi R g i R -  I h i R -  ~ gi 

l l 8~, 2~o, i i ~ ,  ~o, 
3',t, 2~,, 3',t, so,, 
3~t, 2~i, 3~t, SoT, 
31,, 4~o, 4~ot 8030, 31,, a,~o, 
32,, 4030, 4~o, 8~.  3~,, a,~o, 
3~,, 4~,o 3~,, a,~,o 
3~,, 403,0 ~, ,  ~,g,o 
3+r, 4',00 3~, a",oo 

21,o 21oo 2L' 21oo 2-~,o 2'," S,,o S,oo s" S,oo 
2}, o 2otto 2~' 2A, o 2', ,o 2'" Sl'lO $010 Sp Sol 0 

2 ',o, 2~o, 2~o, 8~o, S,o, Soot 

RgiR -I  hiR - l  

$~110 $~ 
S I 

S110 -5  ~ 
Soo, 80o, 

Note: The subscripts p, r, ~,, ~: correspond to the directions [x/2-+--~, , , /~--~,0], [x/~---~, ~ , 0 ] ,  [ - , ~ - ~ ,  ,/2 +42,01 [-4~--+-~, v r 2 ~ , 0 ] ,  
respectively. These directions have an angular distance of 22.5 ° in the anticlockwise sense from the directions [100], [I 10], [010], and ~ 10], 
respectively. 

to determine the distinct composite point groups 
obtained. This is achieved by the following procedure. 
We start by taking the list of subgroups (trivial or 
not) of the given point group G~. For each subgroup 
Do rotations can be found leading to at least one 
composite point group. Such rotations are determined 
according to either theorem 5 or theorem 6. 

We consider first the case where the colour- 
reversing transformations are given by ci = hiR-1 with 
hi belonging to Do. The composite point groups cor- 
responding to Do are then determined by taking sep- 
arately each element of Do and applying theorem 5. 
Thus, for each subgroup Do, i and each hj ~ Do i we 
obtain a set of rotations Rk such that (a) R~, =/~j and 
(b) RkDo.iRk i = Do,~ (i.e. Do, i is invariant with respect 
to Rk). For any such rotation Rk the composite point 
group has the form D =  Do, i +Do, iRk I. 

Finally, there remains the consideration of the case 
of composite groups with colour-reversing operations 
of the type ci = f i r  -~. According to theorem 6 a com- 
posite group D = Do + Dof~R-~, with f~ ~ D 2 - Do, is 
formed for rotations R such that fiR-If~R-~ ~ Do. We 
note, however, that if we substitute R~ -I =fiR -~ then 
this case is reduced to the one mentioned just above. 
Thus, in order to determine the rotations yielding 
composite groups of the form D - - D o  + Dof~R -~ we 
work as follows. We consider each composite group 
D =  Do+DoR-~ I separately and we take the index 2 
extensions of Do: DE= Do+Dofi. For each such 
extension belonging to Gw a composite point group 
D = D o + D o f R  -1, isomorphous to D = Do+DoR~, ~, 
will correspond to the rotation R-~=fC, IR~, ~= 
(R,,f~)-'. 

6. Application of the algorithm 

We consider now two examples for demonstrating 
the application of the proposed algorithm. In the first 
example the point group of the two components is 

the cubic group Gw = m3m and the misorientation of 
the components is described by the rotation 
{[001]/45°} ' . The reference coordinate system is 
orthogonal and has the standard setting (International 
Tables for X-ray Crystallography, 1965) with respect 
to the white point group. The group Gw contains 48 
elements given in Table 1 under the heading gi. The 
ordinary symmetry elements of the dichromatic com- 
posite are those elements of Gw for which RgiR -I 
belongs to Gw with 

x/r2/2 -~/2/2 0) 
R =  v/2/2 4~ /2  0 .  

0 0 1 

Thus, according to the second column of Table 1, we 
have D o = 4 / m m m .  The rotation R satisfies the 
equation R 2 = 4~om and, therefore, the composite point 
group is of the form D = Do +Do R-m. The colour- 
reversing elements of this group are given in the 
column hiR -~ in Table 1. We note that in the dichro- 
matic composite there is an eightfold colour-reversing 
axis (i.e. the set of symmet~ operations 1, 8~'o~, 4~ol, 
8~ol, 2oo~, 2oo1,~ 8oo15', 4~ol, 8000 and according to the 
tables given by Vlachavas (1980) (see also Vlachavas, 
1984; following paper) the composite point group is 
8' /mm'm' .  This example illustrates the possibility of 
non-crystallographic composite point groups (see 
below). 

In the second example considered here we deter- 
mine the distinct composite groups corresponding to 
Gw = 222 = {1, 2 ~oo, 2~1o, 2~om}. Its subgroups are Do~ = 
Gw, Do.2 {1, I ! !' = 21oo}, Do,3 = {1, 2OLO} , Do. 4 = {I, 2ooi}, 
Do,5 ={1}. For Do,~ and h,, = 1, the relation R 2= 1 is 
satisfied for a proper or improper rotation of the form 
{[xyz]/360°} ' or {[xyz]/1800} '. The former corresponds 
to either the anti-identity operation 1' or the anti- 
inversion operation 1' and we note that both leave 
Do,~ invariant. Thus,we have D = Do, i + Do.i 1'--2221' 
and D = Do.m + Do, i 1'= m'm'm'  correspondingly. 
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The rotation {[xyz]/180°} ', on the other hand, cor- 
responds to either a twofold colour-reversing oper- 
ation along [xyz] or a colour-reversing reflection per- 
pendicular to [xyz], and they leave Do•t invariant only 
when [xyz] is along special directions. Thus, the oper- 
ation {[xyz]/180°} ' will lead to a composite point 
group D = Do., + Do,,R -! only when the rotation axis 
is parallel to any of the directions [100_], [010], [001], 
[110], [110], [101], [i01], 1011], 1011] (or their 
opposites). We note, however, that the proper or 
improper rotation {[100]/180°} ' can be expressed 
as 21001' or Slool', respectively. Consequently, 
these rotations will yield 

D =  D o  , + D o  , 2 '  ' 1' ' • • ,ool = Do,1 +Do,  I =2221  

o r  

= 1 '  D Do,, +Do, tS,oo = Do, l "~-{Slo0, i, SOLO, Soo,}l' 

= m'rh 'm'  

(and similarly for {[010]/180°} ' and {[001]/180°}'). 
Rotation {[110]/180°} ' corresponds to 211',o or s'lto 

and, thus, it gives 

0 D o ,  I + O o , 1 2 1 1 o  = 0 o , 1  +{2',;o, 1' 3' , '  = ' 4ool, 4oo,, 2i,o} 

= 4'22' 

o r  

D = Do., + Do.lS~,o = Do., +{S],o, 4olo,, 4oo,,-3' S~lo} 

= 4'2m' 

(and similarly for one the proper and improper rota- 
tions along the rest of the directions mentioned 
above). 

We turn our attention, now, to the second element 
of Do.,, i.e. h~ = ' = 21oo, and the relation R 2 21oo gives 
R = {[100]/90°} ' (and {[100]/270°}'). We can express 

l 3 3 l R as 4,00 (and 41oo) or ~,lOO (and ~,loo) and we obtain 

0 = 0o.1 + 0o.,4',oo' = 0o., +{41'oo, 4,oo," 2~1,,' 2~r,} 

= Do., + Do.143oo = 4'22' 
o r  

D = Do., + Do.143oo = Do,. +{431'oo, 4,oo,-" Sol,,' s~i,} 

= Do., + Do.,411oo = 4'2m '. 

Similarly, the remaining elements of Do.,, i.e. 2O~lO and 
2o~o,, will yield the composite point groups 4'22' (for 
the proper rotations {[010]/+ 900} ' and {[001 ] / +  900} ') 
and 4'2 m' (for the corresponding improper rotations). 

Next, we have to consider the subgroups Do.2, Do.3, 
Do.4. However, we determine only the composite point 
groups associated with Do.2, and we note that the 
algorithm can be applied identically for Do, 3 and Do, 4. 
For Do,2 ={1,2',oo} and h~ = 1 we have that R must be 
{[xyz]/360°} ', {[100]/180°} ' or {[Oyz]/180°} '. The first 
two rotations have already been considered above 
and, thus, we have to examine only {[Oyz]/180°} ' here. 

This rotation may be proper or improper, expressed 
as 2~y~ or S~yz, respectively. The composite point 

. groups obtained are 

D Do.2 + Oo.221'yz {1, 21oo, " = = 2Oy~, 2Olzy} = 22'2 ' 

o r  

= 21oo, Soyz, StOY.y} = 2 m ' m .  D Do.2 + Do.2S~yz = {1, i , 

For the subgroups Do.3 and Do,4 the groups 22'2' and 
2m 'm '  are obtained by the rotations {[xOz]/180 °} 
and {[xyO]/180°} ', respectively. For Do,2={1,211oo} 
and h~=21too we have R is {[100]/90°} ', which, 
however, has already been considered above. 

The remaining subgroup Do.5 ={1} will yield two 
rotations: {[xyz]/360°} ' (already considered above) or 
{[xyz]/180°} '. The latter corresponds to 21x~z or S'xyz 

l '  i '  , and, thus, D = Do.5+Do.52xyz ={1, 2xyz}=2 or D =  
' ' - ' respectively. Do.s + Do.sSxyz = { 1, s x y z }  - m ,  

Finally, we determine the rotations corresponding 
to theorem 6. Let the composite point group 22 '2 '= 
{1 ,  ' " " 2oo,, 2~Oz, 2eox}=Do.4+Do.4 R - I ,  where R is the 
proper rotation {[xyO]/180°} '. The point group Gw = 
222 can be written as 222 = Do.4 + Do.42 Iio o = 
0 0 , 4  + ! Do,42o,o. Thus, the composite group 22'2' can 
be obtained not only by {[xyO]/180°} ' but also by 
{[xy0]/180°}'211oo and {[xy0]/180°}'2~olo. Now, the 
direction cosines of [xyz] are c, = cos 0,, Cz = sin 01 
and c3=0 where 0 is the angle between [100] and 
[xy0], and the rotation {[xyO]/180 °} can be expressed 
as (Jeffreys & Jeffreys, 1950) 

2c - 1 2Cl Ca 0 

R =  1 2oC2 2c22-10 -10 

\ [ cos ( 2 0 1 ) s i n  ( 2 0 1 ) i )  
= | s i n  (201) -cos(201) • 

0 0 - 

The rotation {[xyO]/180°}'2',00 is, therefore, written as 

tcos 20, sin 20, i)(i 
sin (20,) - c o s  (201) 

0 0 - 

cos (20,) -s in(201) 

= t sin (0201) cos (20,) 0 

-1  

0 - 

or {[xyO]/180°}'21,oo = {[001]/201}'. Similarly, we have 
o , l o , {[xyO]/180 } 20,0 = {[001]/180 +201}. Consequently, 

t , I I 1 the composite point group 22 2 ={1, 2o01, 2xoz, 2cox} 
is obtained by one of the proper rotations 
{[xyO]/180°} ', {[001]/201}' and {[001]/180°+20,} '. 
Table 2 summarizes the determination of the rotations 
corresponding to theorem 6 for the white group Gw = 
222. The first column of this table gives the composite 
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Table 2. Determination of  the rotations corresponding to theorem 6 for the superposition of  two point groups 222 

01,02,03 are the angles between [100] and the directions [xy0],  [x0z ]  and  [0yz],  respectively. 

D =  Do + Do R - l  
D = Do+Do(R f i )  -1 R Do D2 = D o + D o  f,  R1 = Rf~ 

22'2' {1,2~ol, r v = 2xyo, 2~xO} {[xyO]/180°} ' {1, 2~.)t} 222 = D0 + Do211oo {[001]/281}' 
222 = D O + Do2~1 o {[001]/180 ° +201}' 

2m'm' = {1, 2~o~, S'yo, S~xo}' {[xy0]/180°}'i {1, 2~o~} 222= Do+ Do2 ~oo' {[001]/20~}'] 
222 = D O + Do2~l o {[001]/180 ° +201}'i 

22'2'={1, 2o~ ~o, 2xoz," 2 ~'ox} {[xOz]/180°} ' {1, 2~,o} 222= Do+ Do2 ~, oo {[010]/202}' 

2m'm'= {1, 2~10, S'oz, S~o~} {[x0z]/180°} ']  {I, 2~,o} 222 = D O + Do2~o ~ {[010]/180 ° +202}' 
222 = O o + Do2',o o {[010]/202}'] 

22'2'={I,  2',oo, 2oyz," 2~zy} {[Oyz]/180°} ' {1, 2',oo} 222= Do+Do2~o , {[010]/1800+202}'i 
222 = Do + Do2~lo {[100]/203}' 

2m'ra'= {1, 2'too, s~yz, s~y} {[0yz]/180°} ' ]  {1, 2~too} 222 = Do + Do2o~o~ {[100]/180 ° +203}' 
222 = D O + Do2o~ ~o {[100]/203}'] 
222 = Do + Do2o~o~ {[ 100]/180 ° + 2 03}'] 

Table 3. Antisymmetry point groups formed by the superposition of two identical point groups with 
common origin 

Point 
group of 

components 
I 
i 
2 
m 

2/m 
222 

2mm 
m m m  

4 
71 

4/m 
422 

4ram 
712m 

4/mmm 
3 

32 

3m 
~m 
6 

6/m 
622 

6mm 
8m2 

6/mmm 
23 
m3 
432 
713m 

m3m 

Antisymmetry point group of composite 
I1' ] '  2' m' 
]1' 2'/m' 
21' 2/m' 22'2' 2mfm ' 4' 71' 2' m' 
ml'  2'/m 2'ram' 2' m' 
2 /ml '  mm'm' 4'/.m 2'/m' 
2221' m'm'm' 4'22' 71'2m' 22'2' 2m'm' 2' m' 
2mml' mmm' 4'mm' 71'2'm 22'2' 2m'm' 2'ram' 2' m' 
mmml' 4'/mmm' mm'm' 2'/m' 
41' 4/m' 42'2' 4m'm' 8' 8' 2' m' 
711' 4'/m' 7~2'm' 2' m' 
4 /ml '  4/n.lm'm' 8'/m 2'/m' 
4221' 4/ m' m' m' 8'22' 8'2m' 42'2' 4'22' 4m' m' 71'2m' 22'2' 2m'm' 2' m' 
4mini' 4/ m' mm 8'ram' 8'2' m 42'2' 4m' m' 2'ram' 2' m' 
712m1' 4'/m'mm' 4'22' 7~'2m' 712'ra' 22'2' 2m'm' 2'mm' 2' m' 
4/mraml' 8'/ramm' 4'/mmm' 4/mm'm' mm'm' 2'/m' 
31' 3' 32' 3m' 6' 6' 2' m' 
31' 3m' 6'/m' 2'/m' 
321' 3'm' 6'22' 6'2m' 32' 3m' 22'2' 2m'm' 4' Fl' 2' rn' 

3ml '  3'rn 6'mm' 6'2'm 32' 3m' 2'ram' 2' m' 
3ml'  6'/m'mm' 3m' 4'/m 2'/m' mm'm' 
61' 6/m' 62'2' 6m'm' 12' 12' 2' m' 
61' 6'/m' 62'm' 2' m' 
6 /ml '  6/mm'm' 12'/m 2'/m' 
6221' 6/m'm'm' 12'22' 1____~'2m' 62'2' 6m'm' 4'22' 71'2m' 22'2' 2m'm' 2' m' 
6mini' 6/m'mm 12'ram' IZ2'2'm 62'2' 6m'm' 2'ram' 2' m' 
6m21' 6'/mmm' 62'm' 4'ram' 71'2'm 22'2' 2m'm' 2'mm' 2' m' 
6 /mmml'  12'/mmm' 6/mm'm' 4'/mmm' mm'm' 2'/m' 
231' m'3' 4'3m' 4'32' 32' 3m' 6' 6' 22'2' 2m'm' 2' m' 
m31' m3m' 3m' 6'/m' mm'm' 2'/m' 
4321' m'3'm' 8'22' 8'2m' 6'22' 6'2m' 4'22' 42'2' 4m'm' 71'2m' 32' 3m' 22'2' 2m'm' 2' m' 
713m1' m'3'm 6'ram' 6'2'm 712'm' 32' 3m' 2'tara' 2' m' 
m3ml'  8'/mmm' 6'/m'mm' 4'/mmm' 4/mm'm' 3m' mm'm' 2'/m' 

point groups as were determined above. We must give the rotation R and the subgroup Do associated 
notice that the maximum-order subgroup of Gw is with each composite group. In the next column the 
not included in Table 2, since, according to theorem 6, index 2 extensions of Do belonging to group 222 are 
this subgroup cannot yleld a composite group of the shown. For any such extension the distinct rotations 
form D = Do + Do f iR-  . Also, the trivial subgroup RI = Rf~ yielding the particular composite group are 
Do,5 = {1} does not appear in Table 2. This is because given in the last column of Table 2. 
the composite groups associated with Do,5 and 
derived according to theorem 5 correspond to rota- 
tions of general form. Consequently, any further 7. Conclusions 
investigation of these rotations would not be of any The application of the algorithm was demonstrated 
significance. The second and third columns of Table 2 for particular examples in the foregoing section. The 
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superposition of any two identical point groups can 
be treated in a similar way. Table 3 gives the antisym- 
metry groups created by the superposition of a white 
and a black point group of crystallographic symmetry. 

A number of interesting conclusions can be 
obtained from the application of the proposed 
algorithm. These are expressed in the following rules. 

Rule 1: Rotations R being isomorphic to a sym- 
metry operation of the white point group Gw yield a 
dichromatic composite with symmetry described by 
the grey point group D = Gw + Gw 1', where 1' is the 
anti-identity operation. 

Let R = g,, 1' = l'g,,, then the relation RgiR-  ~ = gj 
becomes g~ l '&l 'g~ ~ = l'g~gig~ ~1'= & and, thus, it 
holds for all the elements of the white point group. 
Also, R 2 = g~ l'g,, 1' = g~ ~ G~. Consequently, this case 
corresponds to complete coincidence of the white and 
black point groups and, hence, the dichromatic point 
group is a grey point group isomorphic to the white 
point group. 

Rule 2: If the point group G~ contains a symmetry 
rotation 0 about a direction [xyz], then the rotation 

= 0/2 (and its symmetry equivalent) about the 
direction [xyz], i.e. R = {[xyz]/~}', gives rise to a com- 
posite point group D = Do + DoR -~, where Do is the 
highest-order subgroup of G~ being invariant with R. 

A special case of this rule is the following principle 
given by Pond & Bollmann (1979): 'colour-reversing 
rotation axes, u', can only be evenfold, and arise when 
two ordinary u/2-fold rotation axes coincide and 0 
is 27r/u'. 

Rule 3: For a mirror plane any rotation 0 ~ 180 ° 
along a direction on the plane results in a colour- 
reversing mirror plane (or, in the case of improper 
rotation, in a twofold colour-reversing rotational 
axis), whereas for 0 = 180 ° an mm'2' composite group 
is created. 

Rule 4: In the case of two-, four- and sixfold 
ordinary rotational axes, rotation about a direction 
perpendicular to these axes results in a twofold 
colour-reversing rotational axis (or to a colour- 
reversing mirror plane in the case of improper rota- 
tions) except for some special rotation angles for 
which higher symmetry results due to the particular 
symmetry. 

Rule 2 implies that in the particular case of a four- 
or sixfold ordinary axis special rotations (i.e. 0 = 
2~r/u, u =8 or 12, respectively) create an eight- or 
12-fold colour-reversing axis, respectively. Therefore, 
the superposition of ordinary point groups may result 
in noncrystallographic point groups and such groups 
are discussed in the following paper (Vlachavas, 
1984). Here it is sufficient to notice that the symbolism 
of these groups follows the notation scheme of the 
senior crystallographic point groups. Also, we must 
mention that the 12-fold rotation and rotoinversion 
axes are designated for clarification by a line under- 
neath their symbols. 
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Abstract 

Lists of 8- and 12-fold two-coloured groups consistent 
with zero- and one-dimensional periodic objects are 
given. These groups are derived as extensions of the 
corresponding crystallographic two-coloured groups 
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and are of particular interest because they are the 
only non-crystallographic groups obtained by the 
appropriate superposition of crystallographic point 
or rod groups. 

1. Introduction 

In the previous paper (Vlachavas, 1984) the symmetry 
of the composite obtained by the superposition of 

O 1984 International Union of Crystallography 


